Essential Background

Module 1

In this module:

• Key differences between dicamba and 2,4-D
• Potential problems from improper application
• Impact of improper application: a look back at 2017
Key Differences between Dicamba and 2,4-D
Define It!

Synthetic Auxin Herbicide Key Terms

- **Auxin**: plant hormone that promotes growth, root formation, leaf abscission, etc.

- **Synthetic auxins**: herbicides that act similar to plant auxins
Dicamba vs. 2,4-D

Differences in Symptomology

✓ Dicamba

✓ 2,4-D
Dicamba

Tell-tale Symptom: Leaf Cupping
2,4-D

Tell-tale Symptom: Epinasty
Dicamba vs. 2,4-D

Differences in Cropping Systems

<table>
<thead>
<tr>
<th>Available GM Traits</th>
<th>Tolerances Conferred</th>
<th>Soybean</th>
<th>Cotton</th>
<th>Soybean</th>
<th>Cotton</th>
<th>Corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicamba</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2,4-D</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FOP herbicides</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
<td>✓*</td>
</tr>
</tbody>
</table>

Available Formulations

Xtend system: XtendiMax, FeXapan Engenia

Enlist system: Enlist One, Enlist Duo

Cotton and Soybean are inherently tolerant to FOP herbicides; tolerance is not conferred by Xtend or Enlist traits
Potential Problems from Improper Application
Potential Problems

Improper Application Can Have Serious Consequences

- Crop injury
- Yield loss
- Damage to nearby sensitive species
- Harm to neighbor relationships
- Lawsuits and fines
- Black eye for the agriculture industry
- Improper use jeopardizes access to future traits, herbicides, and tools
Crop Injury

Potential Problems with Improper Application

- Both dicamba and 2,4-D can cause visible injury if not applied according to the label.
- Each crop or plant species will differ in their sensitivity to 2,4-D and dicamba; for example:
 - Non-tolerant soybean is extremely sensitive to dicamba.
 - Non-tolerant cotton is extremely sensitive to 2,4-D.
- The same kind of species sensitivity differences can exist with vegetables, ornamentals, and tree species.
Crop Injury

Example: Potential for Injury on Non-Resistant Soybean

The Impact of Driftable Fractions of Dicamba and 2,4-D on Non-Resistant Soybean

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate (fraction of 1x*)</th>
<th>Visible Injury 2 Weeks After Trtmt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs ae/A</td>
<td>V3 Drift Event</td>
</tr>
<tr>
<td>Dicamba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000025 (1/20,000)</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>0.00025 (1/2,000)</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>0.0025 (1/200)</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>0.025 (1/20)</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>2,4-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000025 (1/40,000)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0.00025 (1/4,000)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.0025 (1/400)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.025 (1/40)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>----</td>
<td>1</td>
</tr>
</tbody>
</table>

Source: Solomon & Bradley (2014)

*1x use rate for dicamba = 0.5 lb/A; 1x use rate for 2,4-D = 1 lb/A.

Numbers in red indicate significant differences from the non-treated control.
Crop Injury

Example: Potential for Injury on Non-Tolerant Soybean

Non-treated, Control (healthy, non-injured soybean comparison)

Dicamba
1/20,000\(^{th}\) of the 1x Use Rate
(0.000025 lb ae/A)
14 days after V3 application

2,4-D
1/40\(^{th}\) of the 1x Use Rate
(0.025 lb ae/A)
14 days after V3 application
Yield Loss

Potential Problems with Improper Application

- Both dicamba and 2,4-D can lead to yield loss if applied at the wrong growth stage.

Example: Application on soybean after R2 stage can lead to yield loss.
Yield Loss

Example: Potential for Yield Loss in Non-Resistant Soybean

The Impact of Driftable Fractions of Dicamba and 2,4-D on Non-Resistant Soybean

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate lbs ae/A (fraction of 1x*)</th>
<th>Visible Injury 2 Weeks After Trtmt</th>
<th>Soybean Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V3 Drift Event</td>
<td>R2 Drift Event</td>
</tr>
<tr>
<td>Dicamba</td>
<td>0.000025 (1/20,000)</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0.00025 (1/2,000)</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>0.0025 (1/200)</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>0.025 (1/20)</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>2,4-D</td>
<td>0.000025 (1/40,000)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00025 (1/4,000)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0025 (1/400)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.025 (1/40)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>----</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*1x use rate for dicamba = 0.5 lb/A; 1x use rate for 2,4-D = 1 lb/A.

**Numbers in red indicate significant differences from the non-treated control.

Source: Solomon & Bradley (2014)
Yield Loss

Example: Potential for Yield Loss in Non-Resistant Soybean

| Non-treated Control (healthy, non-injured soybean comparison) | Dicamba 1/200th of 1x Rate (0.0025 lb ae/A) 14 days after R2 application | Dicamba 1/20th of 1x Rate (0.025 lb ae/A) 14 days after R2 application |

14% yield loss

68% yield loss

Source: Solomon & Bradley (2014)
Another Consideration

Dicamba Injury this Year Can Affect Seed Next Year

- Soybean seed emergence was reduced by 50% when parent soybean plants were exposed to a 1/20x use rate of dicamba (0.025 lb/A) at flowering or pod filling

- Progeny from plants treated at R1-R6 growth stages exhibited significant dicamba symptomology 14 days after planting

Sources: Thompson & Egli (1973); Barber et al. (2015)
Crop Injury and Yield Loss

Potential for Injury and Yield Loss in Non-Tolerant Cotton

Cotton injured by 1/500th of the 1X rate of 2,4-D. 2,4-D resulted in higher visual injury and yield loss to cotton than dicamba or 5 other synthetic auxin herbicides.

Source: Marple et al. (2007)

2,4-D at 1/40th the labeled use rate caused a 45-50% cotton yield reduction when applied at early growth stages, and a 68% yield loss when applied at the pinhead square growth stage.

Source: Everitt & Keeling (2009)
Damage to Other Sensitive Species

Potential Problems with Improper Application

- Fruits
- Vegetables
- Ornamentals
- Flowers
- Trees
Damage to Other Sensitive Species
Sensitivity of Various Crop and Vegetable Species to 2,4-D

<table>
<thead>
<tr>
<th>Herbicide Rate of Detectable Injury</th>
<th>Lower</th>
<th>Moderate</th>
<th>Severe</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1/75X</td>
<td>Broccoli, Cabbage, Kale, Mustard, Onions, Peanut, Turnip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/75-1/300X</td>
<td>Cantaloupe, Canola, Cucumber, Pecan, Squash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/300-1/800X</td>
<td>Pepper, Pumpkin, Tomato, Watermelon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1/800X</td>
<td>Cotton, Grapes*, Tobacco*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data from literature; all other data generated in GA field studies.

Slide courtesy of Dr. Stanley Culpepper, University of Georgia
Damage to Other Sensitive Species

Sensitivity of Various Crop and Vegetable Species to Dicamba

Herbicide Rate of Detectable Injury

- **Lower**
 - Broccoli
 - Cabbage
 - Kale
 - Mustard
 - Turnip
 - >1/75X

- **Moderate**
 - Cantaloupe
 - Cucumber
 - Squash
 - 1/75-1/300X

- **Severe**
 - Cotton
 - Pepper
 - Tomato
 - Watermelon
 - 1/300-1/800X

- **Extreme**
 - Grapes*
 - Lima bean
 - Southern pea
 - Snap bean
 - Soybean
 - Tobacco*
 - < 1/800X

*Data from literature; all other data generated in GA field studies.

Slide courtesy of Dr. Stanley Culpepper, University of Georgia
Damage to Other Sensitive Species

Sensitivity of Various Tree and Ornamental Species to Dicamba

<table>
<thead>
<tr>
<th>Lower</th>
<th>Moderate</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walnut</td>
<td>Pecan</td>
<td>Apple</td>
</tr>
<tr>
<td>Raspberry</td>
<td>Elm</td>
<td>Peach</td>
</tr>
<tr>
<td>Crabapple</td>
<td>Redbud</td>
<td>Grape</td>
</tr>
<tr>
<td>Hydrangea</td>
<td>Rose</td>
<td>Elderberry</td>
</tr>
<tr>
<td>Sweetgum</td>
<td></td>
<td>Dogwood</td>
</tr>
</tbody>
</table>

Results based on a 2017 experiment conducted in Columbia, Missouri
Damage to Other Sensitive Species

Sensitivity of Various Tree and Ornamental Species to 2,4-D

- **Lower**: Maple, Raspberry, Crabapple, Hydrangea, Sweetgum, Rose, Elderberry
- **Moderate**: Peach, Elm, Walnut, Pecan
- **Extreme**: Grape, Apple, Dogwood, Oak, Redbud

Results based on a 2017 experiment conducted in Columbia, Missouri
A Black Eye for the Ag Industry

Potential Problems with Improper Application

EPA executes search warrants related to Dicamba

Saturday, October 22, 2016
Cody Tucker
Daily Dunklin Democrat

According to a news release obtained by the DDD Friday from the Environmental Protection Agency, EPA has executed federal search warrants at several locations in southeastern Missouri as part of an investigation into alleged misuse or misapplication of herbicide products containing Dicamba. EPA’s investigation is ongoing and stems from widespread complaints of damage to various crops across Missouri and several states in the Midwest and Southeast.

Bootheel man arrested following fatal shooting allegedly sparked by dicamba dispute

By Blake Gray, St. Louis Post-Dispatch

Jerry Thurston, left, and his wife Lisa Thurston stand in their vineyard of about 12 acres on Thursday, Oct. 26, 2017 at Spring Valley Farm & Vineyard in Pulaski, Illinois. Jerry said about 4 acres of his crops from the vineyard along with 40 acres of soybeans where damaged from the herbicide, Dicamba, that drifted to his fields killing his crops.

Andrew J. Whitaker
Impact of Improper Application:
A look back at 2017
Improper Application of Dicamba

A Look Back at 2017

In 2017, thousands of acres were damaged in Missouri.
Dicamba Complaints in Missouri

Number of Complaints and Reports of Crop Damage* in 2017

- 108,758 acres of soybean
- 18,904 tomato plants
- 758 acres of peaches
- 132 acres of vineyards
- 130 acres rice
- 122 acres of watermelons
- 35 acres of alfalfa
- 24 acres certified organic vegetables
- 15 acres of pecan trees
- 12 acres of apple trees
- 11 commercial gardens
- 10 acres of cantaloupes
- 2 acres of pumpkins
- 900 mums
- 40 residential properties (gardens/trees/shrubs)

Total: 310 complainants (335 complaints) across 52 counties

(as of 10/26/2017)

*Crops damaged as identified by complainants: (as of 10/26/2017)
U.S. Injury Investigations

Dicamba-related Injury Investigations as Reported by State Departments of Agriculture

*Total: 2,708

(*as of October 15, 2017)
Injured U.S. Acreage

Estimates of Dicamba-injured Soybean Acreage in the U.S. Reported by State Extension Scientists

*Total: ~3.6 million

(*as of October 15, 2017)
Key Reminders:

- Synthetic auxin herbicides can be an effective tool for the management of troublesome broadleaf weed species.

- Dicamba and 2,4-D have the potential to cause a variety of issues when the herbicides contact sensitive plant species.

- The movement of dicamba caused significant damage in 2017 in Missouri and across the U.S.

- Misapplication contributed to the problems observed in 2017.
Acknowledgements

Module Authors

Dr. Kevin Bradley
Dr. Mandy Bish
Division of Plant Sciences
University of Missouri-Columbia

Other Contributors

Dr. Stanley Culpepper, University of Georgia
Dr. Greg Kruger, University of Nebraska
Dr. Larry Steckel, University of Tennessee
Missouri Department of Agriculture

Sources

