Investigations of the Sensitivity of Ornamental, Fruit, and Nut Plant Species to 2,4-D and Dicamba

Brian Dintelmann Advisor: Dr. Kevin Bradley

Outline

- Introduction
- 2017 and 2018 Studies
 - Objectives
 - Materials and Methods
 - Results
- Conclusions

Mizzou

Introduction

- Herbicide resistant weeds
- Release of dicamba and 2,4-D tolerant crops
- Off-target movement of 2,4-D and dicamba

Off-target Movement

The movement of a herbicide spray away from the intended target to an unintended target. It can happen during application, hours, or days after an application is made.

- Primary Drift
 - Physical spray particles
 - Influenced by wind, and sprayer setup.
- Secondary Drift
 - Vapors of herbicide
 - Influenced by herbicide formulation, temperature, RH, wind, & inversions

Concern for nearby specialty crop growers

Concern for general public

Official Dicamba-related Injury Reports to MO Dept. of Agriculture (2017)

Crops Damaged:

- 108,758 acres of soybeans
 18,904 tomato plants
 758 acres of peaches
 132 acres of vineyards
 130 acres rice
 122 acres of watermelons
 35 acres of alfalfa
 24 acres organic vegetables
- 15 acres of pecan trees
 12 acres of apple trees
 11 commercial gardens
 10 acres of cantaloupes
 2 acres of pumpkins
 900 mums
 40 residential properties
 (gardens/trees/shrubs)

© Dr. Kevin Bradley, University of Missouri

Objectives

- To determine the **sensitivity** of ornamental, fruit, and woody and species to 2,4-D and dicamba
- To document differences in 2,4-D and dicamba symptomology

Plant Species

- Apple
- Peach
- Norton Grape
- Black Walnut
- Pecan
- Raspberry
- Strawberry
- Elderberry
- Dogwood

- Red Maple
- Sweetgum
- Pin Oak
- Crabapple
- American Elm
- Redbud
- Hydrangea
- Viburnum
- Rose

Active Ingredient	1X Rate (kg ae/A)	Fraction of 1X Rate		
2 1 D Chalina		1/2x		
(Enlist One)	1.09	1/20x		
		1/200x		
2,4-D Choline + Glyphosate		1/2x		
	1.09 + 1.1	1/20x		
(Enlist Duo)		1/200x		
		1/2x		
Dicamba (DGA+VaporGrip) (Xtendimax)	0.56	1/20x		
		1/200x		
Dicamba (DGA+VaporGrip) + Glyphosate (Xtendimax + Roundup)	0.56 + 1.1	1/2x		
		1/20x		
		1/200x		

Materials and Methods

- 18 perennial species were established in 10-20 L pots in New Franklin, MO in spring of 2017 and 2018.
- The experimental design was a split-plot with five replications.
- Herbicide applications were made to plants on June 8, 2017 and June 12, 2018 with a CO₂-powered backpack sprayer delivering 140 L/ha at 138 kPa.

Materials and Methods

- Visual injury was assessed at regular time intervals following treatment.
- Tree trunk diameter and shoot length were also measured.
- Data was analyzed in SAS using the PROC GLIMMIX procedure. Means were separated using Fisher's Protected LSD, $P \leq 0.05$.

Influence of Driftable Fractions of 2,4-D and Dicamba on Visual Injury 28 DAT

Influence of Herbicide Rates on Ornamental, Fruit, and Woody Plant Species

1/2X Rates of Dicamba vs. 2,4-D on Fruit and Nut Tree Species

Dicamba Injury on Apple

Dicamba Injury on Pecan

2,4-D Injury on Pecan

Mizzou **Beeg**

nce

Influence of 1/20x 2,4-D vs. Dicamba on Norton Grape

1/2X Rates of Dicamba vs. 2,4-D on Ornamental Species

Dicamba Injury on Dogwood

2,4-D Injury on Dogwood

Mizzou **ee6**

2,4-D Injury on Redbud

Mizzou ee6

Dicamba Injury on Redbud

1/2X Rates of Dicamba vs. 2,4-D on Shade Tree Species

Up Close Dicamba Injury to Maple

Dicamba vs. 2,4-D at the 1/2X rate on Oak

Dicamba

2,4-D

Dicamba vs. 2,4-D at the 1/200X rate on Oak

Dicamba

2,4-D

Influence of Driftable Fractions of 2,4-D and Dicamba on Tree Trunk Diameter Growth

Influence of Driftable Fractions 2,4-D and Dicamba on Tree Trunk Diameter Growth

	Fruit and Ornamental Tree Species								
Herbicide Treatment (Rate)	Apple	🗱 Peach	* Walnut	≭ Elm	쁆 Maple	Oak	Dogwood		
	Tree Trunk Diameter Growth (mm)								
Non-Treated Control	4.9	6.1	2.9	5.1	6.3	6.7	4.3		
2,4-D Choline (1/200)	3.8	5.2	1.8	5.6	5.7	5.8	4.2		
2,4-D Choline (1/20)	4.3	5.3	1.5	4.7	5.8	6.4	5.0		
2,4-D Choline (1/2)	4.0	4.0*	0.9*	3.4*	5.7	5.4	2.8		
2,4-D Choline + Glyphosate (1/200) 4.0	5.4	2.1	5.0	5.2	7.6	5.0		
2,4-D Choline + Glyphosate (1/20)	4.0	5.4	1.3*	5.2	6.1	5.7	3.2		
2,4-D Choline + Glyphosate (1/2)	4.0	5.4	0.0*	2.5*	6.2	1.9 *	0.3*		
Dicamba (1/200)	4.0	5.3	2.9	5.1	5.7	5.2	4.5		
Dicamba (1/20)	3.8	5.4	3.1	4.9	4.3*	4.5*	3.3		
Dicamba (1/2)	3.0*	3.2*	2.1	4.6	4.3*	4.8*	1.5*		
Dicamba + Glyphosate (1/200)	4.3	5.3	2.3	4.9	6.7	5.3	4.5		
Dicamba + Glyphosate (1/20)	4.8	5.0	2.6	4.5	4.8	5.3	3.4		
Dicamba + Glyphosate (1/2)	2.2*	3.6*	0.8*	3.6*	4.5*	4.4*	0.5*		

* Indicates significant difference from the non-treated control at the 0.05 level of significance.

Species with a greater sensitivity to dicamba

Based on ALL assessments, the following species were classified as having a greater overall sensitivity to dicamba...

Species with a greater sensitivity to 2,4-D

Based on ALL assessments, the following species were classified as having a greater overall sensitivity to 2,4-D...

Conclusions

- Species differ in their **sensitivity** and **symptomology**
- Overall, grape and oak were the most sensitive to the 1/200X rates
- Hydrangea and raspberry were the least sensitive species
- Tree trunk diameter growth correlates with visual injury assessments

Thank you!

- Dr. Kevin Bradley: Advisor
- Dr. Michele Warmund: Committee member
- Dr. Hank Stelzer: Committee member

- Dr. Mandy Bish
- Delbert Knerr
- Fellow graduate students

Mizzou

- Student workers
- HARC Staff

